AutoEncoder fashion MNIST
fashion MNIST 데이터셋을 이용하여 기본적인 Autoencoder를 구현하는 페이지다.
import torch
import torchvision
import torch.nn.functional as F
from torch import nn, optim
from torchvision import transforms, datasets
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
import numpy as np
Autoencoder 구현에 앞서 필요한 라이브러리를 import 해준다.
EPOCH = 10
BATCH_SIZE = 64
USE_CUDA = torch.cuda.is_available()
DEVICE = torch.device("cuda" if USE_CUDA else "cpu")
print("Using Device: ", DEVICE)
trainset = datasets.FashionMNIST(
root ='./.data/',
train = True, download = True,
transform = transforms.ToTensor()
)
train_loader = torch.utils.data.DataLoader(
dataset = trainset,
batch_size = BATCH_SIZE,
shuffle = True,
num_workers = 2
)
Fashion MNIST를 사용자의 폴더 내에 다운로드해준다.
class Autoencoder(nn.Module):
def __init__(self):
super(Autoencoder, self).__init__()
self.encoder = nn.Sequential(
nn.Linear(28*28, 128),
nn.ReLU(),
nn.Linear(128, 64),
nn.ReLU(),
nn.Linear(64, 12),
nn.ReLU(),
nn.Linear(12 ,3)
)
self.decoder = nn.Sequential(
nn.Linear(3, 12),
nn.ReLU(),
nn.Linear(12, 64),
nn.ReLU(),
nn.Linear(64, 128),
nn.ReLU(),
nn.Linear(128, 28*28),
nn.Sigmoid()
)
def forward(self, x):
encoded = self.encoder(x)
decoded = self.decoder(encoded)
return encoded, decoded
model = Autoencoder().to(DEVICE)
optimizer = torch.optim.Adam(model.parameters(), lr=0.005)
criterion = nn.MSELoss()
Autoencoder에서 optimizer로 Adam, 그리고 손실값으로는 MSELoss를 사용했다.
view_data = trainset.data[:5].view(-1, 28*28)
view_data = view_data.type(torch.FloatTensor)/255
def train(model, train_loader):
model.train()
for idx, (x, label) in enumerate(train_loader):
x = x.view(-1, 28*28).to(DEVICE)
y = x.view(-1, 28*28).to(DEVICE)
label = label.to(DEVICE)
encoded, decoded = model(x)
loss = criterion(decoded, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
for epoch in range(1, EPOCH+1):
train(model, train_loader)
test_x = view_data.to(DEVICE)
_, decoded_data = model(test_x)
f, a = plt.subplot(2, 5, figsize=(5,2))
print("[Epoch {}]".format(epoch))
for i in range(5):
img = np.reshape(view_data.data.numpy()[i], (28, 28))
a[0][i].imshow(img, cma p='gray')
for i in range(5):
img = np.reshape(decoded_data.to("cpu").data.numpy()[i], (28, 28))
a[0][i].imshow(img, cmap='gray')
plt.show()
Last updated